PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models.
نویسندگان
چکیده
Unlike previous pandemic viruses, the 2009 H1N1 pandemic influenza virus does not code for the virulence factor PB1-F2. The genome of the 2009 H1N1 virus contains three stop codons preventing PB1-F2 expression; however, PB1-F2 production could occur following genetic mutation or reassortment. Thus, it is of great interest to understand the impact that expression of the PB1-F2 protein might have in the context of the 2009 pandemic influenza virus, A/California/04/2009 (Cal/09). We have addressed this question by generating two Cal/09 viruses with productive PB1-F2 open reading frames containing either an asparagine at position 66 of PB1-F2 (66N) or a serine at position 66 (66S): this N66S change has previously been shown to be associated with increased virulence in mice. We used these viruses to investigate the effect on virulence conferred by expression of the 66N or the 66S PB1-F2 protein in both in vitro and in vivo systems. Our results show enhanced replication of the 66S virus in A549 cells, while studies of BALB/c and DBA/2 mice and ferrets revealed no significant differences in symptoms of infection with wild-type Cal/09 versus the 66N or 66S virus variant. Also, coinfection of mice with Streptococcus pneumoniae and the different viruses (recombinant wild-type [rWT] Cal/09 and the 66N and 66S viruses) did not result in significant differences in mortality. Mice infected with either PB1-F2-expressing virus did demonstrate altered protein levels of proinflammatory cytokines; differences were observed to be greater in infection caused by the 66S virus. In summary, our study demonstrates that PB1-F2 expression by the Cal/09 virus modulates the immune response to infection while having a minimal effect on virus virulence in two mammalian models.
منابع مشابه
Influenza A virus PB1-F2 protein expression is regulated in a strain-specific manner by sequences located downstream of the PB1-F2 initiation codon.
Translation of influenza A virus PB1-F2 occurs in a second open reading frame (ORF) of the PB1 gene segment. PB1-F2 has been implicated in regulation of polymerase activity, immunopathology, susceptibility to secondary bacterial infection, and induction of apoptosis. Experimental evidence of PB1-F2 molecular function during infection has been collected primarily from human and avian viral isola...
متن کاملA Serine12Stop mutation in PB1-F2 of the 2009 pandemic (H1N1) influenza A: a possible reason for its enhanced transmission and pathogenicity to humans
As the scientific community scrambles to define the ancestry and lineages of the eight segments of new pandemic H1N1 strain, we looked for unique genetic events in this virus's genome to explain the newly found enhanced virulence and transmissibility among humans. Genome annotations of this virus identified a stop mutation replacing serine at codon 12 (S12Stop) of the PB1-F2 protein, a virulenc...
متن کاملNon-Avian Animal Reservoirs Present a Source of Influenza A PB1-F2 Proteins with Novel Virulence-Enhancing Markers
PB1-F2 protein, expressed from an alternative reading frame of most influenza A virus (IAV) PB1 segments, may possess specific residues associated with enhanced inflammation (L62, R75, R79, and L82) and cytotoxicity (I68, L69, and V70). These residues were shown to increase the pathogenicity of primary viral and secondary bacterial infections in a mouse model. In contrast to human seasonal infl...
متن کاملKinetic Characterization of PB1-F2-Mediated Immunopathology during Highly Pathogenic Avian H5N1 Influenza Virus Infection
The PB1-F2 protein encoded by influenza A viruses can contribute to virulence, a feature that is dependent of its sequence polymorphism. Whereas PB1-F2 from some H1N1 viruses were shown to exacerbate the inflammatory response within the airways, the contribution of PB1-F2 to highly pathogenic avian influenza virus (HPAIV) virulence in mammals remains poorly described. Using a H5N1 HPAIV strain ...
متن کاملEarly apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation
Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 84 9 شماره
صفحات -
تاریخ انتشار 2010